2004 Commissioning Run

 Commissioned NPDGamma Experiment and Beam Line February–April, 2004

All components except LH₂ target fully tested

Only minor problems identified

• All commissioning goals from plan given to DOE met

Commissioning Goals

- Neutron guide system
- Neutron beam chopper
- Magnetic guide field system
- ³He beam monitors
- ³He polarizer

- RF spin flipper
- CsI detector array
- Detector electronics
- Data acquisition system
- Detector motion system

Neutron Guide System

• m=3 supermirror guide, $9.5\times 9.5~{\rm cm^2}$, 21 m long

Commissioning of Neutron Guide System

- Performance meets specifications
- No improvements needed

Neutron Beam Chopper UNH, IU, LANL

- Two independent, redundant choppers
- 1 m diameter Gd_2O_3 coated aluminum blades

Commissioning of Neutron Beam Chopper

- Chopper performed as expected
- Improved electronics under construction to eliminate noise pickup

Magnetic Guide Field System LBL, JLab, LANL

- ullet Four coil race-track design, $B=10~\mathrm{G}$
- Gradient specification of < 1 mG/cm

Commissioning of Magnetic Guide Field System

• dB_y/dz within specification

 \bullet dB_x/dz and dB_z/dz less than 3 mG/cm

• Improvements planned: better measurements, shim coils

³He Beam Monitors Manitoba, TRIUMF, LANL

- ³He ion chambers
- Measure neutron flux, polarization, spin flip efficiency

Commissioning of ³He Beam Monitors

- Performance meets specifications
- More preamps under construction

³**He Polarizer**Michigan, NIST, Hamilton, Dayton, UNH, LANL

- 12.6 cm diameter, 5.7 bar·cm ³He cell
- 2 × 30 W laser power

Commissioning of ³He Polarizer

- Polarizer very stable $46 \pm 2\%$ average
- ullet Work to improve P
- Fix adiabatic fast passage system

RF Spin Flipper

- 30 kHz axial magnetic field
- Rotation angle $\theta = \gamma B_{\rm rf} \Delta t$, so need $B_{\rm rf}$ proportional to 1/t

RF Spin Flipper Field Map

ullet Agreement with calculation $\sim 1\%$

Commissioning of RF Spin Flipper

- Spin flipper performed well
- Preliminary spin flip efficiency 95%
- ullet More stable 1/t ramp generator needed

CsI Detector Array IU, LANL, KEK

- 48 Element CsI detector array
- Each detector is $15 \times 15 \times 15$ cm³
- Scintillation light detected by vacuum photo diodes

Commissioning of CsI Detector Array

- Parity-violating and parity-conserving asymmetries in Cl
- $A_{pV} = 19 \pm 2 \times 10^{-6}$
- $A_{pc} = 0.6 \pm 2 \times 10^{-6}$

Commissioning of CsI Detector Array

- Beam-off asymmetries pickup from spin flipper
- $A_{\rm pv} = 1.5 \pm 4.5 \times 10^{-9}$
- $A_{pc} = -7 \pm 5 \times 10^{-9}$

Detector Electronics LANL, TRIUMF

- Current-mode, solid-state gain components
- Noise must be less than counting statistics

Commissioning of Detector Electronics

- Detector electronics perform well
- A few preamps need cleaning/repair for lower noise

Data Acquisition System LANL

- Three VME crates, 96 ADC Channels
- Data transferred via Ethernet
- 3 TB RAID storage

Commissioning of Data Acquisition System

- DAQ worked 1 TB of data collected
- Some missing beam pulses (10^{-4}) update software
- ADC sampling jitter replace gate generators
- Online analysis continues to evolve

Detector Motion System Manitoba, TRIUMF

- ullet Remote controlled motion ± 10 mm in x and y
- Required to establish detector axes

Commissioning of Detector Motion System

- Some further software development required
- Limit checks for LH₂ target needed

Detector Pedestals

- Dominated by activation, time-dependent component
- Typically 7% of real signal from target
- Dilutes asymmetry measurements
- Complicates polarization measurements
- Indicates possible activation danger for detectors
- Improved shielding needed: more Li

Asymmetries from Construction/Shielding Materials

Effect on LH₂ Target Measurement

	$PV (10^{-8})$	$PC (10^{-8})$
Al	0.0±3.0	2.0±3.0
В	0.9 ± 1.6	-3.2 ± 2.4
Cu	2.4 ± 5.0	0.6 ± 5.0
In	-1.3 ± 0.9	$-1.8{\pm}1.3$

Summary

- Commissioning run very successful Better than many expected
- Heavy participation by collaboration
 25 researchers from 11 outside institutions
- Learned about scheduling, interaction of subgroups
 Important for future planning
- All components except LH₂ target fully tested
 All goals met
- Only minor problems identified